
Chun-Rong Huang

Defining Your Own Data Type

The Struct in C++
 A structure is a user-defined type that you define using the

keyword struct, so it is often referred to as a struct

 A struct in C++ is functionally replaceable by a class

 Almost all the variables that you have seen up to now have

been able to store a single type of entity

 Any physical object you can think of needs several items of

data

 Book

 Title, author, publisher, date of publication, number of pages, price, topic

or classification, and ISBN number

Defining a struct
 You could declare a structure to accommodate a book

 It creates a new type for variables, and the name of the type

is BOOK

 The elements Title, Author, Publisher, and Year enclosed

between the braces in the definition above may also be

referred to as members or fields of the BOOK structure

Initializing a struct
 The first way to get data into the members of a struct is to

define initial values in the declaration

 The initializing values appear between braces, separated by

commas, in much the same way that you defined initial values

for members of an array

Accessing the Members of a struct
 To access individual members of a struct, you can use the

member selection operator

 You can use a member of a structure in exactly the same way

as any other variable of the same type as the member

Using structs

Using structs
 Because the yard, huts, and pool are all rectangular, you

could define a struct type to represent any of these objects

 Ex7_01

IntelliSense Assistance with

Structures

The struct RECT
 Rectangles are used a great deal in Windows programs

 For this reason, there is a RECT structure predefined in the

header file windows.h

 MFC also defines a class called CRect, which is the

equivalent of a RECT structure

Using Pointers with a struct
 You can create a pointer to a variable of a structure type

 In fact, many of the functions declared in windows.h that

work with RECT objects require pointers to a RECT as

arguments

 This avoids the copying of the whole structure when a RECT

argument is passed to a function

Using Pointers with a struct
 A struct can’t contain a member of the same type as the

struct being defined

 It can contain a pointer to a struct, including a pointer to a

struct of the same type

 This allows objects of type ListElement to be daisy-chained

together, where

 Each ListElement can contain the address of the next

ListElement object in a chain

 The last in the chain having the pointer as nullptr

Using Pointers with a struct
 Linked list

Accessing Structure Members

through a Pointer

 You can now access the members of aRect through the

pointer with a statement such as this

 The parentheses to dereference the pointer here are essential,

because the member access operator takes precedence over

the dereferencing operator

 The indirect member selection operator ->

Data Types, Objects, Classes and

Instances
 Native C++ lets you create variables that can be any of a

range of fundamental data types

 int, long, double, and so on

 The variables of the fundamental types don’t allow you to

model real world objects

 It’s hard to model a box in terms of an int, for example;

however, you can use the members of a struct to define a set

of attributes for such an object

Data Types, Objects, Classes and

Instances
 With this definition of a new data type called Box, you define

variables of this type just as you did with variables of the

basic types

 You can then create, manipulate, and destroy as many Box

objects as you need to in your program

 This means that you can model objects using structs and

write your programs

Data Types, Objects, Classes and

Instances
 Object oriented programming (OOP) is based on three basic

concepts relating to object types

 Encapsulation

 Polymorphism

 Inheritance

 The notion of a struct in C++ goes far beyond the original

concept of struct in C — it incorporates the object-oriented

notion of a class

Data Types, Objects, Classes and

Instances
 This idea of classes, from which you can create your own data

types and use them just like the native types, is fundamental

to C++

 The new keyword class was introduced into the language to

describe this concept

 The keywords struct and class are almost identical in C++,

except for the access control to the members

 The keyword struct is maintained for backwards

compatibility with C

 Everything that you can do with a struct, and more, you can

achieve with a class

Data Types, Objects, Classes and

Instances
 Take a look at how you might define a class representing

boxes

 The keyword public followed by a colon that precedes the

definition of the members of the class

 It just specifies that the members of the class that follow the

keyword are generally accessible, in the same way as the

members of a structure are

Data Types, Objects, Classes and

Instances
 The variables that you define as part of the class are called

data members of the class, because they are variables that

store data

 You have also called the class CBox instead of Box

 You could have called the class Box, but the MFC adopts the

convention of using the prefix C for all class names

 MFC also prefixes data members of classes with m_ to

distinguish them from other variables

Operations on Classes
 In C++, you can create new data types as classes to represent

whatever kinds of objects you like

 Classes (and structures) aren’t limited to just holding data

 You can also define member functions or even operations that

act on objects of your classes using the standard C++ operators

Terminology
 A class is a user-defined data type

 Object-oriented programming (OOP) is the

programming style based on the idea of defining your own

data types as classes, where the data types are specific to the

domain of the problem you intend to solve

 Declaring an object of a class type is sometimes referred to as

instantiation because you are creating an instance of a

class

Terminology
 Instances of a class are referred to as objects

 The idea of an object containing the data implicit in its

definition, together with the functions that operate on that

data, is referred to as encapsulation

Understanding Class
 A class is a specification of a data type that you define

 It can contain data elements that can either be variables of the

basic types in C++, or of other user-defined types

 The data elements of a class may be single data elements,

arrays, pointers, arrays of pointers of almost any kind, or

objects of other classes

 The data and functions within a class are called members of

the class

Understanding Class
 The members of a class that are data items are called data

members and the members that are functions are called

function members or member functions

 The member functions of a class are also sometimes referred

to as methods

Understanding Class
 The data members are also referred to as fields, and this

terminology is used with C++/CLI

 When you define a class, you define a blueprint for a data

type

 This doesn’t actually define any data, but it does define what

the class name means

 To create a variable of a basic data type, you need to use a

declaration statement

Defining a Class
 You defined the Cbox data type using the keyword class as

follows

 The names of all the members of a class are local to the class

 You can therefore use the same names elsewhere in a

program without causing any problems

Access Control in a Class
 The public keyword determines the access attributes of the

members of the class that follow it

 Specifying the data members as public means that these

members of an object of the class can be accessed anywhere

within the scope of the class object to which they belong

 You can also specify the members of a class as

 private

 protected

 If you omit the access specification altogether, the members

have the default attribute, private

Declaring Objects of a Class
 You declare objects of a class with exactly the same sort of

declaration that you use to declare objects of basic types

Accessing the Data Members of a

Class
 You can refer to the data members of objects of a class using

the direct member selection operator that you used to

access members of a struct

 You can only access the data member in this way in a function

that is outside the class, because the m_Height member was

specified as having public access

 If it wasn’t defined as public, this statement would not

compile

 Ex7_02

Member Functions of a Class
 A member function of a class is a function that has its

definition or its prototype within the class definition

 It operates on any object of the class of which it is a member,

and has access to all the members of a class for that object

 Ex7_03

Positioning a Member Function

Definition
 A member function definition need not be placed inside the

class definition

 Telling the compiler that the function belongs to the class

Cbox with the scope resolution operator, ::

Inline Functions
 With an inline function, the compiler tries to expand the

code in the body of the function in place of a call to the

function

 This avoids much of the overhead of calling the function and,

therefore, speeds up your code

Inline Functions
 It’s best used for very short, simple functions, such as our

function Volume() in the CBox class

 Because such functions execute faster and inserting the body

code does not significantly increase the size of the executable

module

 With the function definition outside of the class definition,

the compiler treats the function as a normal function

 It’s also possible to tell the compiler that, if possible, you

would like the function to be considered as inline

Class Constructors
 A class constructor is a special function in a class that is

responsible for creating new objects when required

 A constructor provides the opportunity to initialize objects

as they are created and to ensure that data members only

contain valid values

 A class may have several constructors, enabling you to create

objects in various ways

 The primary purpose of a class constructor is to assign initial

values to the data elements of the class, and no return type

for a constructor is necessary or permitted

 Ex7_04

Class Constructors

The Default Constructor
 Try modifying the last example by adding the declaration for

box2

 You’ve left box2 without initializing values

 When you rebuild this version of the program, you get the

error message

 This means that the compiler is looking for a default

constructor for box2

 Referred to as the no arg constructor because you haven’t

supplied any initializing values for the data members

The Default Constructor
 A default constructor is one that does not require any

arguments to be supplied, which can be either a constructor

that has no parameters specified in the constructor definition,

or one whose arguments are all optional

 Ex7_05

Assigning Default Parameter

Values in a Class
 You can specify default values for the parameters to a

function in the function prototype

 You can also do this for class member functions, including

constructors

 If you put the definition of the member function inside the

class definition, you can put the default values for the

parameters in the function header

Assigning Default Parameter

Values in a Class
 The declaration of box2 requires a constructor without

parameters and either constructor can now be called without

parameters

 Ex7_06

Using an Initialization List in a

Constructor
 Initialization list

 This technique for initializing parameters in a constructor is

important

 It’s the only way of setting values for certain types of data

members of an object

 The MFC also relies heavily on the initialization list technique

Making a Constructor Explicit
 Implicit conversion

 Explicit

 With the constructor declared as explicit, the statement

assigning the value 99.0 to the box object will not compile

Making a Constructor Explicit
 Implicit

 Implicit call to the constructor above with the first argument

value as 99.0 and the other two arguments with default

values

Private Members of a Class
 Class members that are private can, in general, be accessed

only by member functions of a class

Private Members of a Class
 To keep data and function members of a class safe from

unnecessary meddling, it’s good practice to declare those that

don’t need to be exposed as private

 Only make public what is essential to the use of your class

 Ex7_07

Accessing private Class Members
 It’s all very well protecting them from unauthorized

modification, but that’s no reason to keep their values a

secret

 All that’s necessary is to write a member function to return

the value of a data member

The friend Functions of a Class
 You want certain selected functions that are not members of

a class to be able to access all the members of a class

 Such functions are called friend functions of a class and

are defined using the keyword friend

 Friend functions are not members of the class

 The access attributes do not apply to them

 Ex7_08

Placing friend Function Definitions

Inside the Class
 You could have combined the definition of the function with

its declaration as a friend of the Cbox class within the class

definition

The Default Copy Constructor
 Suppose that you declare and initialize a CBox object box1

with this statement

 You now want to create another CBox object, identical to the

first

 Ex7_09

THE POINTER this
 When any member function executes, it automatically

contains a hidden pointer with the name this, which points to

the object used with the function call

 Therefore, when the member m_Length is accessed in the

Volume() function during execution

 It’s actually referring to this -> m_Length

 You can use the pointer this explicitly within a member

function to return a pointer to the current object

 Ex7_10

CONST OBJECTS
 You will undoubtedly want to create class objects that are

fixed from time to time

 You might define it with the following statement

 If you declare an object of a class as const, the compiler will

not allow any member function to be called for it that might

alter it

const Member Functions of a Class
 To make the this pointer in a member function const, you

must declare the function as const within the class definition

 A const member function cannot call a non-const member

function of the same class, since this would potentially

modify the object

 The Compare() function calls Volume() , the Volume()

member must also be declared as const

 Ex7_10A

Member Function Definitions

Outside the Class
 When the definition of a const member function appears

outside the class, the header for the definition must have the

keyword const added

Member Function Definitions

Outside the Class
 Both the Volume() and Compare() members have been

declared as const

Arrays of Objects
 You can create an array of objects in exactly the same way as

you created an ordinary array where the elements were one

of the built-in types

 Each element of an array of class objects causes the default

constructor to be called

 Ex7_11

Static Data Members
 When you declare data members of a class to be static, the

effect is that the static data members are defined only once

and are shared between all objects of the class

Static Data Members
 One use for a static data member is to count how many

objects actually exist

 You could add a static data member to the public section of

the CBox class by adding the following statement to the

previous class definition

 You can’t initialize the static data member in the class

definition

 You don’t want to initialize it in a constructor, because you

want to increment it every time the constructor is called

Static Data Members
 You want it initialized before any object is created

 Ex7_12

Static Function Members of a Class
 By declaring a function member as static, you make it

independent of any particular object of the class

 The static member function has the advantage that it exists,

and can be called, even if no objects of the class exist

 In this case, only static data members can be used because

they are the only ones that exist

 You can call a static function member of a class to examine

static data members, even when you do not know for certain

that any objects of the class exist

 After the objects have been defined, a static member function

can access private as well as public members of class objects

Static Function Members of a Class
 A static function might have this prototype

 A static function can be called in relation to a particular

object by a statement such as the following

 The same function could also be called without reference to

an object

Pointer to Objects
 You declare a pointer to a class object in the same way that

you declare other pointers

 Ex7_13

References to Class Objects
 To declare a reference to the object cigar

 To use a reference to calculate the volume of the object cigar,

you would just use the reference name where the object

name would otherwise appear

 A reference acts as an alias for the object it refers to, so the

usage is exactly the same as using the original object name

Implementing a Copy Constructor
 The copy constructor is a constructor that creates an object

by initializing it with an existing object of the same class

 Call by value->Call by reference

